The following information is provided to help you specify and install tapping screws correctly. Care should be used when selecting and installing screws to assure optimal performance.

TERMINOLOGY

To eliminate confusion and assure the proper screw is used, specifications for tapping screws should be written to include:

1. Thread diameter
2. Threads per inch
3. Point type
4. Description of screw
5. Drive size
6. Head Style
7. Material
8. Finish / plating

Example

1/4-14 x 1" BLAZER-3 Drill Screw. 3/8" HWH. Carbon Steel. TRI-SEAL® 1,000 hour Salt Spray coating.

Thread Diameter

<table>
<thead>
<tr>
<th>Thread Diameter</th>
<th>Threads Per Inch</th>
<th>Screw Length</th>
<th>Point Type</th>
<th>Head Size & Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>14</td>
<td>1"</td>
<td>BLAZER-3</td>
<td>3/8" HWH</td>
</tr>
</tbody>
</table>

Determine Drill Point Type

Drilling Thickness (Drill Point Type)

Add up the total thickness that will be drilled by the screw and select a drill point type that meets the required drilling thickness range. (Do not include pre-punched materials that will not be drilled by the screw.)

Select the desired drill point type located on the size chart of the BLAZER® / CONCEALOR® sell sheet (i.e. BLAZER-5).

Installation Techniques

Recommended Screw-Gun Speed

Using the proper tooling is important for producing consistent installation. It also minimizes potential screw or application failure caused by over-driven and under-driven fasteners.

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Max RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6, #8, #10</td>
<td>2,500</td>
</tr>
<tr>
<td>All wood screws</td>
<td>2,500</td>
</tr>
<tr>
<td>#12, 1/4", 5/16"</td>
<td>2,000</td>
</tr>
<tr>
<td>All DP5</td>
<td>2,000</td>
</tr>
<tr>
<td>304 Stainless Screws</td>
<td>1,200</td>
</tr>
</tbody>
</table>

WARNING! DO NOT USE IMPACT TOOLS FOR INSTALLATION!

Using impact tools to install pancake head screws can cause the head to separate from the body due to the high torque and impulse generate by the tool. HWH screws can also be easily overtighten which can lead to connection failure.

TFC is not responsible for failures caused by the use of improper tooling or improper installation.

Accessory Tips

Look familiar?

- Worn out drive bits and sockets produces poor drilling, can strip the recess, and damage painted fasteners.

SET THE MAGNET!

Be sure screw head engages into the socket completely. This will eliminate screw wobble, improve the drilling performance, and reduce damage to painted screw heads.

Sealing Washers

To assure a proper seal, tighten the screw until the EPDM sealant extrudes just to the outer edge of the backing material. This also is a great way to visually inspect the screw to assure it is properly sealed.

Do

- Install fastener perpendicular to the work surface.
- Let the drill point do the work.
- Use a tool with torque control or depth sensing nose piece to prevent over-torqued and under-torqued screws.
- Allow all material to be drilled before tapping into the steel.

Do Not

- Do not exert excessive pressure!
- Do not over drive the screw!
- **Do not use impact tools! (They can torque the screw to failure!)**